Phenomenology with sterile neutrinos

Joachim Kopp

Fermilab, February 2012

based on work done in collaboration with Evgeny Akhmedov, Roni Harnik, Boris Kayser, Pedro Machado, Michele Maltoni, Thomas Schwetz

Outline

1 Theoretical and experimental motivation

Oscillations with sterile neutrinos

Neutrino physics with dark matter detectors

4 Conclusions

Outline

1 Theoretical and experimental motivation

Oscillations with sterile neutrinos

3 Neutrino physics with dark matter detectors

4 Conclusions

Theoretical motivation

- Standard Model singlet fermions are a very generic feature of "new physics" models
 - Leftovers of extended gauge multiplets (e.g. GUT multiplets) (typically heavy)
 - Dark matter (keV ... TeV or above)
- Neutrino—singlet mixing is one of the allowed "portals" between the SM and a hidden sector.
- SM singlet fermions can live at any mass scale
 - ► Here: Focus on O(eV) sterile neutrinos (accessible to oscillation experiments)
 - Motivated experimentally
- Typical Lagrangian:

$$\mathcal{L}_{\mathrm{mass}} \supset Y_{\nu} \, \bar{L} H^* N_R + m_{\mathrm{s}} \, \bar{\nu}_{\mathrm{s}} N_R + \frac{1}{2} M \, \overline{N_R^c} N_R + h.c.$$

⇒ mass mixing between active and sterile neutrinos

Experimental signatures of sterile neutrinos

- Disappearance of active neutrinos (e.g. $\nu_e \rightarrow \nu_s$ oscillations)
- Anomalous transitions Appearance among active neutrinos (e.g. $\nu_{\mu} \rightarrow \nu_{s} \rightarrow \nu_{e}$)
- Oscillation length $L^{\rm osc}=4\pi E/\Delta m_{41}^2$ different from SM expectation (typically shorter)

Notation: $\Delta m_{jk}^2 = m_j^2 - m_k^2$; $m_{4,5}$: mostly sterile, $m_{1,2,3}$: mostly active

Experimental motivation 1: The Gallium anomaly

- Intense radioactive ν_e sources (51 Cr and 37 Ar) have been deployed in the GALLEX and SAGE solar neutrino detectors
- Neutrino detection via 71 Ga + $\nu_e \rightarrow ^{71}$ Ge + e^-
- Result: Measurements consistently lower than expectation (2.7 σ)

Giunti Laveder arXiv:1005.4599, arXiv:1006.3244 Mention et al. Moriond 2011 talk

 Question: How well are efficiencies of the radiochemical method understood?

Experimental motivation 2: LSND and MiniBooNE

LSND:

• $\bar{\nu}_e$ appearance in $\bar{\nu}_{\mu}$ beam from stopped pion source (3 σ)

• MiniBooNE:

- No significant ν_e or $\bar{\nu}_e$ excess in the LSND-preferred region
- ▶ but $\bar{\nu}_e$ consistent with LSND
- ▶ Low-E excess not understood

Experimental motivation 3: The reactor anomaly

- Recent reevaluation of expected reactor $\bar{\nu}_e$ flux is $\sim 3.5\%$ higher than previous prediction Mueller et al. arXiv:1101.2663, confirmed by P. Huber arXiv:1106.0687
- Method: Use measured β -spectra from ²³⁸U, ²³⁵U, ²⁴¹Pu fission at ILL and convert to $\bar{\nu}_{\theta}$ spectrum (for single β -decay: $E_{\nu} = Q E_{\theta}$)
- Problem: Requires knowledge of Q-values for all contributing decays.
 → take from nuclear databases where available, fit to data otherwise
- Cross check:
 - Simulate mock e⁻ spectra using few well-understood β-decays
 - ▶ Reconstruct $\bar{\nu}_e$ spectrum using old method: Result is 3% too low
 - ▶ Reconstruct $\bar{\nu}_e$ spectrum using new method: Result is exact.
- Possible problem: Poorly understood effects in nuclei with large log ft

Huber arXiv:1106.0687

The reactor anti-neutrino anomaly

• Have short-baseline reactor experiments observed a $\bar{\nu}_e$ deficit?

Mention et al. arXiv:1101.2755

red = old reactor $\bar{\nu}_e$ flux prediction blue = new reactor $\bar{\nu}_e$ flux prediction

Sterile neutrino oscillations

Idea:

- Introduce extra neutrino flavor ν_s , mixing with the active ones
- $\nu_e \rightarrow \nu_s$ oscillations explain Gallium anomaly
- $\bar{\nu}_e
 ightarrow \bar{\nu}_s$ oscillations explain reactor anomaly
- $\stackrel{(-)}{\nu}_{\mu} \rightarrow \stackrel{(-)}{\nu}_{s} \rightarrow \stackrel{(-)}{\nu}_{e}$ oscillations explain LSND + MiniBooNE

A 3+1 model: 3 active neutrinos + 1 sterile neutrino

- Short baseline: Standard oscillations ineffective (Δm_{21}^2 , Δm_{31}^2 too small)
- Add extra (sterile) neutrino
- Fit shows: 3+1 neutrino scheme does not work well

JK Maltoni Schwetz 1103.4570 and work in progress see also Giunti Laveder 1107.1452 and 1109.4033; Mention et al. 1101.2755; Karagiorgi et al. 0906.1997 and 1110.3735

"other exps" = NOMAD, KARMEN, MB ν , SBL reactors, CDHS, atmospheric ν , MINOS θ = effective mixing angle for $\stackrel{\leftarrow}{\nu}_{\mu} \rightarrow \stackrel{\leftarrow}{\nu}_{s} \rightarrow \stackrel{\leftarrow}{\nu}_{\theta}$ oscillations

Global fit in a 5-flavor scheme

Check if more than one sterile neutrino improves the fit:

JK Maltoni Schwetz 1103.4570 and work in progress

Global fit in a 5-flavor scheme (2)

	$ \Delta m_{41}^{2} $	$ U_{e4} $	$ U_{\mu 4} $	$ \Delta m_{51}^2 $	<i>U</i> _e 5	$ U_{\mu 5} $	δ/π	χ^2 /dof
3+1	0.48	0.14	0.23					255.5/252
3+2	1.10	0.14	0.11	0.82	0.13	0.12	-0.31	245.2/247
1+3+1	0.48	0.13	0.12	0.90	0.15	0.15	0.62	241.6/247

		$B(ar{ u})$ vs rest	appearance vs disapp.		
	old	new	old	new	
$\chi^2_{PG,3+1}/dof$	27.3/2	25.8/2	15.7/2	14.2/2	
PG ₃₊₁	1.2×10^{-6}	2.5×10^{-6}	3.9×10^{-4}	8.2×10^{-4}	
$\chi^2_{PG,3+2}/dof$	30.0/5	24.8/5	24.7/4	19.5/4	
PG ₃₊₂	1.5×10^{-5}	1.5×10^{-4}	5.7×10^{-5}	6.1×10^{-4}	
$\chi^2_{PG,1+3+1}/dof$	24.9/5	21.2/5	19.6/4	10.7/4	
PG ₁₊₃₊₁	1.5×10^{-4}	7.5×10^{-4}	6.0×10^{-3}	3.1×10^{-2}	

Parameter goodness of fit: Test compatibility of 2 data sets by comparing global χ^2_{\min} to χ^2_{\min} for separate fits

Sterile neutrinos in cosmology

Models with one or several $\mathcal{O}(eV)$ sterile neutrinos are constrained by comsology:

Sum of neutrino masses

$$\sum m_
u \lesssim 0.5 \; {
m eV}$$

of relativistic species

 $N_{\nu} >$ 3 mildly preferred

Hamann Hannestad Raffelt Tamborra Wong, arXiv:1006:5276

Ways out:

- Even more relativistic degrees of freedom
- Dark energy equation of state parameter w < -1
- Neutrino chemical potential

Hamann Hannestad Raffelt Wong, arXiv:1108.4136

 Suppressed production of sterile neutrinos in the early universe for instance by coupling to a Majoron field

Bento Berezhiani, hep-ph/0108064

Global fits — take home message

Substantial tension in the global fit.

- Is one (or all) of the positive results not due to neutrino oscillations?
- Is one (or several) of the null results wrong?
- Are there more than 2 sterile flavors?
- Are there sterile neutrinos plus something else?

Outline

Theoretical and experimental motivation

Oscillations with sterile neutrinos

Neutrino physics with dark matter detectors

4 Conclusions

The standard lore on neutrino oscillations

Diagonalization of the mass terms of the charged leptons and neutrinos gives

$$\mathcal{L} \supset -rac{g}{\sqrt{2}} \left(ar{\mathbf{e}}_{lpha L} \gamma^{\mu} oldsymbol{U}_{lpha j}
u_{j L}
ight) oldsymbol{W}_{\mu}^{-} \; + \; ext{diag. mass terms} \; + \; oldsymbol{h.c.}$$

(flavor eigenstates: $\alpha = e, \mu, \tau$, mass eigenstates: j = 1, 2, 3)

Assume, at time t = 0 and location $\vec{x} = 0$, a flavour eigenstate

$$|
u(0,0)\rangle = |
u_{lpha}\rangle = \sum_{j} U_{lpha j}^{*} |
u_{j}\rangle$$

is produced. At time t, location \vec{x} it has evolved into

$$|
u(t)\rangle = \sum_{i} U_{\alpha j}^{*} e^{-i\mathsf{E}_{j}t + i\vec{\mathsf{p}}_{j}\vec{\mathsf{x}}} |
u_{i}\rangle$$

Oscillation probability: $(L_{jk}^{osc} = 4\pi E/\Delta m_{jk}^2)$

$$P(\nu_{\alpha} \to \nu_{\beta}) = \left| \langle \nu_{\beta} | \nu(t) \rangle \right|^{2} = \sum_{i,k} U_{\alpha j}^{*} U_{\beta j} U_{\alpha k} U_{\beta k}^{*} e^{-i(E_{j} - E_{k})t + i(\vec{p}_{j} - \vec{p}_{k})\vec{x}}$$

The standard lore on neutrino oscillations (2)

In the two-flavor approximation (working in one dimension and assuming $t = x \equiv L$):

$$\begin{split} P(\nu_{\alpha} \to \nu_{\beta}) &= \sum_{j,k} U_{\alpha j}^* U_{\beta j} U_{\alpha k} U_{\beta k}^* e^{-i(E_j - E_k)t + i(\vec{p}_j - \vec{p}_k)\vec{x}} \\ &= \sum_{j,k} U_{\alpha j}^* U_{\beta j} U_{\alpha k} U_{\beta k}^* \exp\left[-2\pi i \frac{L}{L_{jk}^{\text{osc}}}\right] \\ &\simeq \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{4E} \end{split}$$

$$(\theta = \text{mixing angle}, \quad \Delta m^2 = m_2^2 - m_1^2, \quad \alpha \neq \beta)$$

Going beyond the standard approach

Questions not answered by the standard approach:

- How does the Heisenberg uncertainty on E_j , \vec{p}_j (σ_E , $\sigma_p \gg \Delta m^2/2E$) due to localization of the source and detector affect oscillations?
- How heavy can a sterile neutrino be before it can no longer interfere with the active neutrinos?
- Is the neutrino kinematically entangled with its interaction partners (e.g. the muon in $\pi \to \mu\nu$)?
- ...

Neutrino wave packets

One consistent solution: Feynman diagram approach to neutrino oscillations

Akhmedov Cohen Beuthe Cardall Giunti Glashow Grimus Jacob Kayser Keister Kiers Kim JK Lee Ligeti Lindner Nussinov Polyzou Rich Sachs Stockinger Smirnov Weiss, . . .

Treat external particles as (Gaussian) wave packets:

	initial state	final state
Production vertex Detection vertex	$\phi_{Pi}(\vec{x}_1 - \vec{x}_P)e^{-iE_{Pi}t_1} \ \phi_{Di}(\vec{x}_2 - \vec{x}_D)e^{-iE_{Di}t_2}$	$\phi_{Pf}(\vec{X}_1 - \vec{X}_P)e^{+iE_{Pf}t_1} \phi_{Df}(\vec{X}_2 - \vec{X}_D)e^{+iE_{Df}t_2}$

Transition amplitude

$$\begin{split} \emph{i}\mathcal{A}_{\alpha\beta} &= \int d^3x_1 \; dt_1 \int d^3x_2 \; dt_2 \; \phi_{Pi}(\vec{x}_1 - \vec{x}_P) e^{-iE_{Pi}t_1} \; \phi_{Pf}(\vec{x}_1 - \vec{x}_P) e^{+iE_{Pf}t_1} \\ &\times \phi_{Di}(\vec{x}_2 - \vec{x}_D) e^{-iE_{Di}t_2} \; \phi_{Df}(\vec{x}_2 - \vec{x}_D) e^{+iE_{Di}t_2} \\ &\times \sum_j \mathcal{M}_P \mathcal{M}_D U_{\alpha j}^* U_{\beta k} \; \int \frac{d^4p}{(2\pi)^4} e^{-ip_0(t_2 - t_1) + i\vec{p}(\vec{x}_2 - \vec{x}_1)} \frac{i(\not p + m_j)}{p_0^2 - \vec{p}^2 - m_j^2 + i\epsilon} \; . \end{split}$$

(assuming ϕ_{Pi} , ϕ_{Pf} , ϕ_{Di} , ϕ_{Df} to be spinors)

- $dt_1 dt_2$ -integrals \rightarrow energy-conserving δ functions \rightarrow p_0 -integral trivial
- $d^3x_1 d^3x_2$ -integrals can be evaluated if wave packets are Gaussian
- d^3p -integral: Use Grimus-Stockinger theorem (limit of propagator for large $L = |\vec{x}_D \vec{x}_S|$):

 W. Grimus, P. Stockinger, Phys. Rev. **D54** (1996) 3414, hep-ph/9603430

$$\int d^3p \, \frac{\psi(\vec{p}) \, e^{i\vec{p}\vec{L}}}{A - \vec{p}^2 + i\epsilon} \xrightarrow{|\vec{L}| \to \infty} -\frac{2\pi^2}{L} \psi(\sqrt{A} \frac{\vec{L}}{L}) e^{i\sqrt{A}L} + \mathcal{O}(L^{-\frac{3}{2}}).$$

Oscillation probability

$$\begin{split} P_{\alpha\beta}(L) &\propto \sum_{j,k} U_{\alpha j}^* U_{\alpha k} U_{\beta k}^* U_{\beta j} \exp\left[-2\pi i \frac{L}{L_{jk}^{\rm osc}} - \left(\frac{L}{L_{jk}^{\rm coh}}\right)^2 \right. \\ &\left. - \frac{(\Delta m_{jk}^2)^2}{32\sigma_m^2 E^2} - 2\pi^2 \xi^2 \left(\frac{\sigma_x}{L_{jk}^{\rm osc}}\right)^2 - \frac{(m_j^2 + m_k^2)^2}{32\sigma_m^2 E^2}\right], \end{split}$$

Five terms:

see e.g. Beuthe hep-ph/0109119

- Oscillation ($L_{jk}^{\rm osc} = 4\pi E/\Delta m_{jk}^2$)
- Decoherence during propagation (see below)
- Decoherence at production/detection (see below)
- Localization: Typically requires size of neutrino wave packet σ_x smaller than oscillation length (ξ = process-dependent parameter, can also be \sim 0)
- Approximate conservation of average energies/momenta

Oscillation probability

$$\begin{split} P_{\alpha\beta}(L) &\propto \sum_{j,k} U_{\alpha j}^* U_{\alpha k} U_{\beta k}^* U_{\beta j} \exp\left[-2\pi i \frac{L}{L_{jk}^{\rm osc}} - \left(\frac{L}{L_{jk}^{\rm coh}}\right)^2 \right. \\ &\left. - \frac{(\Delta m_{jk}^2)^2}{32\sigma_m^2 E^2} - 2\pi^2 \xi^2 \left(\frac{\sigma_x}{L_{jk}^{\rm osc}}\right)^2 - \frac{(m_j^2 + m_k^2)^2}{32\sigma_m^2 E^2}\right], \end{split}$$

see e.g. Beuthe hep-ph/0109119

In two-flavor approximation, for not too large L and m_j , m_k , the well known formula

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{4E}, \qquad \Delta m^2 = m_2^2 - m_1^2$$

is approximately recovered.

Decoherence due to wave packet separation

 The neutrino's mass eigenstate components separate spatially due to their different group velocities

$$P_{lphaeta}(L) \propto \exp\left[-\left(rac{L}{L_{jk}^{
m coh}}
ight)^2
ight] = \exp\left[-\left(rac{L\,\Delta m_{jk}^2}{4\sqrt{2}\sigma_\chi E^2}
ight)^2
ight]$$

- Decoherence happens faster for short neutrino wave packets (small σ_x), large Δm^2 , or low energy (\rightarrow larger velocity difference)
- σ_X is an effective wave packet size which depends on the localization of the production process (Prod) and the detection process (Det)

$$\sigma_x^2 = \sigma_{x,\text{Prod}}^2 + \sigma_{x,\text{Det}}^2$$

(spatially delocalized detection process can restore coherence even if mass eigenstates are already separated)

• The difficult part: Estimate $\sigma_{x,Prod}$, $\sigma_{x,Det}$

Wave packet decoherence in the NuMI beam

- In the NuMI beam
 - ▶ 10^{-9} cm $\ll \sigma_{x} \lesssim 10$ cm lower limit: interatomic distance scale upper limit: timing resolution of experimental electronics
 - ► *E* ~ 5 GeV
 - $\Delta m_{31}^2 = 2.4 \times 10^{-3} \text{ eV}^2$

Coherence length

$$\begin{split} L_{jk}^{\text{coh}} &= 4\sqrt{2}\sigma_{x}E^{2}/\Delta \textit{m}_{jk}^{2} \\ &\simeq 6\times10^{5} \text{ light years} \bigg(\frac{\sigma_{x}}{10 \text{ cm}}\bigg) \bigg(\frac{\textit{E}}{5 \text{ GeV}}\bigg)^{2} \bigg(\frac{2.4\times10^{-3} \text{ eV}^{2}}{\Delta \textit{m}_{jk}^{2}}\bigg) \end{split}$$

... not relevant experimentally

Note: For supernova neutrinos (smaller σ_x , lower E), L^{coh} is very relevant

Decoherene in neutrino production and detection

$$P_{lphaeta}(L) \propto ext{exp}\left[-rac{(\Delta m_{jk}^2)^2}{32\sigma_m^2 E^2}
ight]$$

- This term accounts for two effects:
 - ► If the neutrino's parent particle (here: the pion) travels a long distance (> L^{osc}) while decaying, oscillations are averaged out.
 - If the experimental energy- and momentum resolutions are sufficient to determine the neutrino mass kinematically, oscillations will vanish.
- In the NuMI beam, the first effect dominates and precludes active—sterile oscillations for

$$\Delta m_{41}^2 \gtrsim 30 \; \mathrm{eV}^2$$

Outline

Theoretical and experimental motivation

Oscillations with sterile neutrinos

Neutrino physics with dark matter detectors

4 Conclusions

Neutrinos and direct dark matter detection

 Solar and atmospheric neutrinos are a well-known background to future direct dark matter searches

- If low-energy neutrino interactions are enhanced by new physics, this background can be significantly enhanced
 - → Possible explanation of DM anomalies?

Pospelov arXiv:1103.3261, Harnik JK Machado (work in progress)

- Introduce new light (1 eV ... 1 GeV) force mediator A', e.g. a B L gauge boson, with small couplings g'
- Differential neutrino scattering cross section on target particle T (electron or atomic nucleus):

$$rac{d\sigma_{
u e}}{dE_r} \sim rac{g'^4 m_T}{(M_{A'}^2 + 2E_r m_T)^2} \,, \qquad \qquad E_r = ext{recoil energy}$$

- Enhanced at low E_r for light A'
- Negligible compared to SM scattering ($\sim g^4 m_T/M_W^4$) at energies probed in dedicated neutrino experiments

• Introduce new light (1 eV ... 1 GeV) force mediator A', e.g. a B-L gauge boson, with small couplings g'

B, C, D: $U(1)_{B-L}$ boson

B: $U(1)_{B-L}$ boson

• Introduce new light (1 eV ... 1 GeV) force mediator A', e.g. a B-L gauge boson, with small couplings g'

B: $U(1)_{B-L}$ boson

• Introduce new light (1 eV ... 1 GeV) force mediator A', e.g. a B-L gauge boson, with small couplings g'

B, C, D: $U(1)_{B-L}$ boson A: ν magnetic moment

B: $U(1)_{B-L}$ boson C, D: kinetically mixed U(1)' + sterile ν

Constraints on light gauge bosons

Harnik JK Machado (work in progress)

most limits taken from compilations by Jaeckel, Redondo, Ringwald; Bjorken, Essig, Schuster, Toro; and Bordag, Klimchitskaya, Mohideen, Mostepanenko

Neutrino model building with a light A' gauge boson

A rich toolbox of possibilities:

- Different types of gauge bosons:
 - ► Gauged B L
 - A "dark photon" coupled to SM particles via kinetic mixing
 - Gauged baryon number
- Sterile neutrinos ν_s :
 - A' can couple more strongly to ν_s than to SM particles (e.g. ν_s carries U(1)' charge, SM particles couple only through small kinetic mixing)
 - O(keV-MeV) sterile neutrinos make it easier to avoid certain bounds
- Neutrino magnetic moments:
 - Magnetic moment interactions also enhanced at low energy

Temporal modulation of neutrino signals

Signals of new light force mediators and/or sterile neutrinos can show seasonal modulation:

- The Earth-Sun distance: Solar neutrino flux peaks in winter.
- Active—sterile neutrino oscillations: For oscillation lengths ≤ 1 AU, sterile neutrino appearance depends on the time of year.

Temporal modulation of neutrino signals (2)

- Sterile neutrino absorption: For strong ν_s –A' couplings and not-too-weak A'–SM couplings, sterile neutrino cannot traverse the Earth.
 - → lower flux at night. And nights are longer in winter.
- Earth matter effects: An MSW-type resonance can lead to modified flux of certain neutrino flavors at night. And nights are longer in winter.
- Direction-dependent detection efficiencies: If channeling effects are important, detection rates depend on the position of the Sun.

Outline

Theoretical and experimental motivation

Oscillations with sterile neutrinos

Neutrino physics with dark matter detectors

4 Conclusions

Conclusions

- Light sterile neutrinos are well motivated experimentally and theoretically
 - ▶ Two 3σ effects, several 2σ hints
 - ▶ But: In the simplest models, severe tension with null results
- Sterile neutrinos are a testing ground for the quantum mechanics of neutrino oscillations
- Rich and interesting neutrino phenomenology in dark matter detectors
 - ► Enhanced v-e and v-N scattering rates at low energy
 - Huge model-building toolbox: Various types of light gauge bosons, sterile neutrinos at different mass scales, magnetic moments, . . .
 - Daily, semi-annual, and annual modulation signals possible

Experimental situation

"Atmospheric oscillations:"

- $\nu_{\mu}
 ightarrow \nu_{ au}$ oscillations
- $\bullet \ \Delta m^2 = (2.50^{+0.09}_{0.16}) \times 10^{-3} \text{ eV}^2$
- Confirmed by Super-K, K2K, MINOS, T2K

"Solar oscillations:"

- $\nu_e \rightarrow \nu_\mu, \nu_\tau$ oscillations
- Confirmed by solar neutrino detectors and KamLAND

Anomalous effects:

- LSND: $\Delta m^2 \gtrsim 0.1 \text{ eV}^2$
- Reactor anomaly: $\Delta m^2 \gtrsim \text{few} \times 0.1 \text{ eV}^2$
- MiniBoone?
- Gallium anomaly?

Plot: Hitoshi Murayama, global fit: Schwetz Tórtola Valle 1108.1376

Fit to reactor anti-neutrino data in a 3+1 model

Assume 3 active neutrinos + 1 sterile neutrino $(\rightarrow \bar{\nu}_e$ can oscillate into sterile neutrinos)

 $\theta_{\rm react}$ = effective mixing angle for $\bar{\nu}_{\it e} \rightarrow \bar{\nu}_{\it s}$ oscillations

Our fitting procedure

- Atmospheric neutrinos: Eight classes of events: Sub-GeV e, μ (p < 400 GeV/c), Sub-GeV e, μ (p > 400 GeV/c), Multi-GeV e, μ , Upward stopping μ , upward throughgoing μ , 10 zenith angle bins each
- MINOS: Include NC and CC disappearance search (based on 1001.0336 and Neutrino 2010 talk by P. Vahle)
- Reactor experiments: Bugey 3 (incl. spectrum), Bugey 4, Chooz (incl. spectrum), Goesgen 1–3, ILL, Krasnoyarsk 1–3, Palo Verde, Rovno
- SBL ν_e appearance experiments: LSND, KARMEN, MiniBooNE (ν (2010) and $\bar{\nu}$ data, consider only E>475 MeV, i.e. low-E excess in ν_e sample not included)
- Gallium anomaly not included
- SBL ν_{μ} disappearance experiments: CDHS, NOMAD
- All codes reproduce the individual fits from the respective experiments.

JK Maltoni Schwetz 1103.4570 and work in progress

The Grimus-Stockinger theorem

Let $\psi(\vec{p})$ be a three times continuously differentiable function on \mathbb{R}^3 , such that ψ itself and all its first and second derivatives decrease at least like $1/|\vec{p}|^2$ for $|\vec{p}| \to \infty$. Then, for any real number A>0,

$$\int \textit{d}^{3}\textit{p}\,\frac{\psi(\vec{\textit{p}})\,\textit{e}^{i\vec{\textit{p}}\vec{\textit{L}}}}{\textit{A}-\vec{\textit{p}}^{2}+i\epsilon} \xrightarrow{|\vec{\textit{L}}|\to\infty} -\frac{2\pi^{2}}{\textit{L}}\psi(\sqrt{\textit{A}}\vec{\textit{L}})\textit{e}^{i\sqrt{\textit{A}}\textit{L}} + \mathcal{O}(\textit{L}^{-\frac{3}{2}}).$$

 \Rightarrow Quantification of requirement of on-shellness for large $L = |\vec{L}|$.

W. Grimus, P. Stockinger, Phys. Rev. **D54** (1996) 3414, hep-ph/9603430

Neutrino wave packets in a long-baseline experiment

Consider neutrino production via $\pi \to \mu\nu$ in the NuMI beam.

• Length of proton, pion, muon, neutrino wave packets:

1 fm
$$\ll \sigma_{x, \text{Prod}} \lesssim$$
 10 cm

(localization of particle in accelerator: $\sim 1 \text{ ns} \times c$)

Neutrino wave packets in a long-baseline experiment

Consider neutrino production via $\pi \to \mu\nu$ in the NuMI beam.

• Length of proton, pion, muon, neutrino wave packets:

1 fm
$$\ll \sigma_{x, \text{Prod}} \lesssim$$
 10 cm

(localization of particle in accelerator: $\sim 1 \text{ ns} \times c$)

Uncertainties in neutrino detection are much smaller:

- Interaction vertex localized to \sim 1–10 Å.
- Duration of detection process: \lesssim 1 ns \sim 10 cm (typical time resolution of detector electronics)
- \Rightarrow Spatial/Temporal uncertainty of ν detection process:

$$\sigma_{x,\mathrm{Det}} < 10~\mathrm{cm}$$

Length of neutrino wave packet

$$\Rightarrow \sigma_{x} = \sqrt{\sigma_{x, \text{Prod}}^{2} + \sigma_{x, \text{Det}}^{2}} \lesssim 10 \text{ cm}$$